ANALYSING VARIOUS OCCASIONAL DISASTERS ON CROP CULTIVATION USING PREDICTIVE ANALYSIS

Dr.M.Rajeswari¹

Assistant Professor,

Department of B. Com (Business Analytics)

PSGR Krishnammal College for Women, Coimbatore, India.

rajeshwarim@psgrkcw.ac.in

S.Avanthikaa²
UG Scholar,

Department of B. Com (Business Analytics)

PSGR Krishnammal College for Women, Coimbatore, India.

avanthikaasakthi@gmail.com

ABSTRACT

Agriculture is the primary source of livelihood for about 58% of India's population. Due to variations in climatic conditions, there exists bottlenecks for increasing the crop production in India. It has become a challenging task to achieve desired targets in agri based crop yield. Crop Yield prediction is one of the important factors in agriculture practices. Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield. The use of technology in agriculture in recent year and data analytics is one such trend that has penetrated into the agriculture field. Occasional disasters like earthquakes, floods, droughts, cyclones, tsunami, landslides, avalanches can deliver massive destruction and loss of life. Analysis of these various related attributes are used in prediction analysis. The results show that the Random forest algorithm is convenient for analysing and internal laws of disaster risk and has good applicability.

Keyword: Agriculture, Occasional disasters, Random forest algorithm

I. INTRODUCTION

Every year disasters, such as hurricanes, floods, earthquakes and tornadoes challenge agricultural production. Because agriculture relies on the weather, climate and water availability to thrive, it is easily impacted by natural events and disasters. Predictive data analytics uses powerful algorithm models to analyse past data to predict future trends. It can be used to improvedisaster relief efforts, thus reducing the economic impact of natural calamities on agriculture. Vulnerability associated with the hazards of natural disasters can be controlled to some extent by accurate and timely prediction and by taking counter-measures to reduce their impacts on agriculture.

II. RELATED WORK

Crop yield maps are important for both the implementation and evaluation of site-specific crop management strategies. Management decisions and evaluations based on yield maps must take into consideration the accuracy and resolution of the maps.[8] The accuracy of DNN model was very stable, despite the increases in the duration of the heatwave. It indicates that the optimized DNN model can provide robust predictions for corn yield under conditions of extreme weather and can be extended to other prediction models for various crops in future work.[4]

Machine learning makes agricultural applications incredibly efficient and simple. Data acquisition, model building, and generalization are the three stages of the machine learning process. The majority of cases, machine learning algorithms are used to deal with complex problems when human competence is insufficient. Machine learning may be used in agriculture to forecast soil parameters like organic carbon and moisture content, as well as crop yield prediction, disease and weed identification in crops, and species detection.[7]

Plant diseases can have a devastating influence on food safety, as well as a considerable loss in both the quality and quantity of agricultural goods. Plant diseases can potentially prevent grain harvesting entirely in severe circumstances. As a result, in the field of agricultural information, computerized identification and diagnosis of plant diseases is widely needed. Many approaches for doing this problem have been offered, with deep learning emerging as the preferred method because to its excellent performance.[2]

Over the past several decades, Information Technology (IT) has been the disruptive force in industries by driving out market inefficiencies through automation and better decision support tools that require the inclusion of both the citizens and consumers in the process. Like all industries, agriculture has not been immune to the constant disruptions over the past century. However, recent advances in computing infrastructure, sensor technology, big data, and advanced algorithms (e.g., Deep Learning)[1] Using precision conservation to increase the sustainability of agricultural systems will contribute to adaptation to a changing climate and maintaining long-term productivity. In other words, sustainability in agriculture is increasingly becoming a necessary component of today's agricultural practices.[5]

The successful application of deep learning to account for the complex nonlinear relationships between crop yields and remote sensing and weather-related covariates has motivated us to apply this approach to predicting the area of flood damage to crops, which affects the food supply,

market prices, and import and export planning. If accurate, such prediction can minimize the socioeconomical impact of crop loss.[6] In precision farming, IoT based smart sensors are deployed in the agriculture land for collecting data related to soil nutrients, fertilizers, and water requirements as well as for analysing the crop growth. Autonomous and semi-autonomous devices such as an unmanned aerial vehicle (UAV). There is an urgent need to mitigate the effects hydro-meteorological disasters through improved use of climate and weather information and forecasts, early warning systems, and appropriate methods of management of land and natural resources.[7]

III. METHODOLOGY

RANDOM FOREST

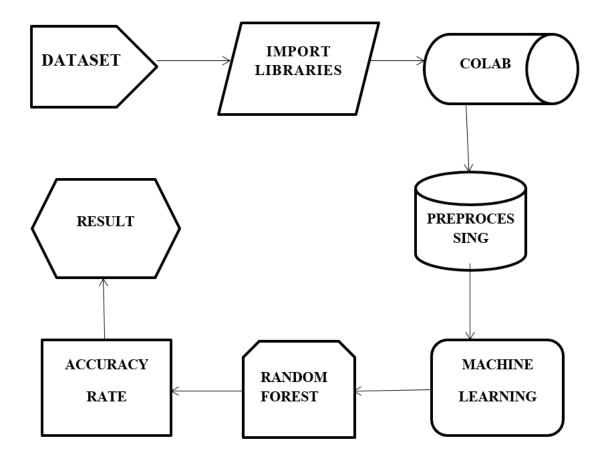
Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model. This algorithm is used in this case to forecast a occasional disaster in India with appropriate attributes. Once, the dataset is imposed into colab. The Random forest machine learning algorithm is used to find accuracy and it is displayed with the respective attributes.

STEP 1: Imported the dataset, modified the dataset and saved in Excel.csv format.

STEP 2: Used Google colab for executing python coding and removed all unwanted data from dataset.

- STEP 3: Then dataset is splitted into training dataset and testing dataset.
- STEP 4: Visualization are made in Google colab foe better understanding of dataset.
- STEP 5: Analysing the crop cultivation based on Occasional disaster.

B. WORK FLOW



IV. RESULT

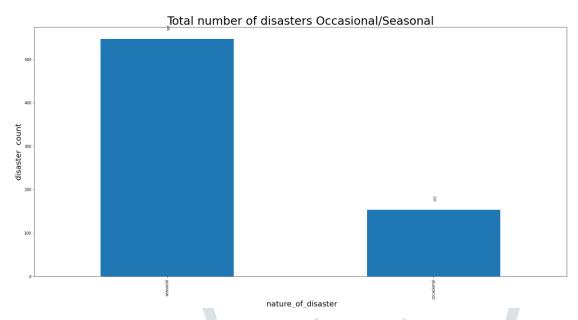


Fig1.1

The fig1.1 shows that seasonal disaster has occurred 547 times and occasional disaster has occurred 153 times.

	year	season	crops_affected	nature_of_disaster
0	1995	winter	ginger (dry)	occasional
1	1995	winter	cardamon	occasional
2	1995	winter	black pepper	occasional
3	1995	autumn	maize	occasional
4	1995	autumn	chillies	occasional
691	2020	monsoon	urad	occasional
693	2020	monsoon	tea	occasional
694	2020	spring	arhar	occasional
695	2020	winter	chillies (dry)	occasional
699	2021	spring	tea	occasional

Fig1.2

The fig1.2 shows the visualization of occasional disaster that affected crops in the year 1995 -2021.

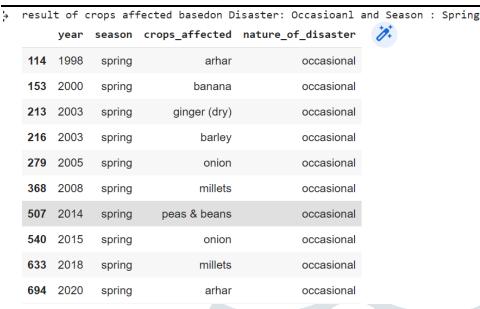


Fig1.3

esult of crops affected basedon Disaaster: occasional and Season: Winter year season crops affected nature of disaster

		year	season	crops_аттестей	nature_ot_disaster	// +
	0	1995	winter	ginger (dry)	occasional	
	1	1995	5 winter ca	cardamon	occasional	
	2	1995	winter	black pepper	occasional	
	8	1995	winter	gram	occasional	
1	121	1999	winter	chillies	occasional	
1	128	1999 winter	ragi	occasional		
1	144	2000		moong	occasional	I
1	175	2001		jute	occasional	
1	182	2002	winter	groundnut	occasional	I
1	193	2002	winter	sunflower	occasional	
	193	2002	winte	er sunflo	ower oc	casional
	205	2003	winte	er pa	addy oc	casional
	260	2005	winte	er millets (si	mall) oc	casional
	261	2005	winte	er po	otato oc	casional

Fig1.4

29	5 2006	winter	sunflower	occasional
34	5 2007	winter	arhar	occasional
36	1 2008	winter	arhar	occasional
42	0 2010	winter	jute	occasional
42	9 2011	winter	groundnut	occasional
44	2 2011	winter	jute	occasional
45	1 2012	winter	potato	occasional
46	5 2012	winter	banana	occasional
51	7 2014	winter	barley	occasional
52	5 2015	winter	millets (small)	occasional
61	8 2018	winter	ragi	occasional
62	6 2018	winter	arhar	occasional
69	5 2020	winter	chillies (dry)	occasional

Fig1.5

Result of crops affected basedon Disaaster: occasional and Season : summer

		year	season	crops_affected	nature_of_disaster
	42	1996	summer	paddy	occasional
	43	1996	summer	sugarcane	occasional
	85	1998	summer	wheat	occasional
	116 199	1999	summer	chillies (dry)	occasional
		1999	summer	urad	occasional
1 1	123	1999	summer	chillies	occasional
43 85 115 116	158	2000	summer	rape-seed & mustard	occasional
11 11 11 11 11	191	2002	summer	sugarcane	occasional
	211	2003	summer	chillies (dry)	occasional

Fig1.6

			,		
Resul	t of d	crops aff		ster: occasional and	Season : summ
	year	season	crops_affected	nature_of_disaster	
42	1996	summer	paddy	occasional	
43	1996	summer	sugarcane	occasional	
85	1998	summer	wheat	occasional	
115	1999	summer	chillies (dry)	occasional	
116	1999	summer	urad	occasional	
123	1999	summer	chillies	occasional	
158	2000	summer	rape-seed & mustard	occasional	
191	2002	summer	sugarcane	occasional	
211	2003	summer	chillies (dry)	occasional	
238	2004	summer	peas & beans	occasional	
254	2004	summer	jute	occasional	
271	2005	summer	cashewnut	occasional	
274	2005	summer	peas & beans	occasional	
				ULL	
290	2005	summer	sunflower	occasional	
300	2006	summer	ginger (dry)	occasional	
301	2006	summer	cardamon	occasional	
302	2006	summer	black pepper	occasional	
320	2007	summer	barley	occasional	
325	2007	summer	gram	occasional	
370	2008	summer	moong	occasional	
382	2009	summer	castor seed	occasional	
398	2009	summer	barley	occasional	
418	2010	summer	coffee	occasional	
423	2010	summer	barley	occasional	
506	2014	summer	chillies	occasional	
514	2014	summer	jute	occasional	
529	2015	summer	onion	occasional	

Fig1.7

occasional	onion	summer	2015	529
occasional	paddy	summer	2015	531
occasional	sugarcane	summer	2015	532
occasional	coriander	2016 summer 2018 summer	2016	553
occasional	urad		2016	554
occasional	chillies		2018	613
occasional	sunflower		2019	646
occasional	moong		2019	659
occasional	barley		2020	679
occasional	coriander	summer	2020	690

Fig1.8

JETIR

```
There are 700 rows and 11 columns passed as Input Data of natural_disaster_dataset
There are 772 rows and 7 columns passed as Training Data cropdetails
Natural disaster on crop Randomly Generated Weights:

[[-0.16595599]

[ 0.44064899]

[-0.99977125]]
Natural disaster on crop Analysis and prediction Ending Weights After Training:

[[-6.11442809]

[ 3.13531908]

[ 6.3262046 ]]
Considering New Situation of Natural disaster on crop of years : 2000 2015 2021

New Output data of Accuracy level:

Accuracy in percentage % [75.6]
```

Fig1.9

The fig1.9 shows the result obtained using Random forest algorithm

V. CONCLUSION

Predicting and increasing agricultural plant yield from occasional disasters using big data technology and Random forest algorithm is relatively suitable. Different results can be obtained by adjusting various parameters. The Random forest algorithm was utilized to obtain the required result. Considering the new situation of natural disaster on crop of years 2000 2015 2021 the obtained accuracy level is 75.6%

REFERENCES

- [1]. Ampatzidis, Y., De Bellis, L., and Luvisi, A. (2017). iPathology: robotic applications and management of plants and plant diseases. Sustainability 9:1010. doi: 10.3390/su9061010
- [2]. Chen Junde, Chen Jinxiu, Zhang Defu, Sun Yuandong, Nanehkaran Y.A.

Using Deep Transfer Learning for Image-Based Plant Disease Identification

Elsevier (2020)

- [3]. Mannava V.K. Sivakumar "Impacts of Natural Disasters in Agriculture, Rangeland and Forestry"DOI: 10.1007/3-540-28307-2_1
- [4]. Nari Kim 1, Sang-Il Na 2, Chan-Won Park 2, Morang Huh 3, Jaiho Oh 3, Kyung-Ja Ha 4, Jaeil Cho 5 and Yang-Won Lee 6,*" An Artificial Intelligence Approach to Prediction of Corn Yields under Extreme Weather Conditions Using Satellite and Meteorological Data" Received: 29 March 2020; Accepted: 26 May 2020; Published: 29 May 2020
- [5]. Noel, A. (2019). Data Becomes Cash Crop in Big Agriculture. Available online at: https://www.bloomberg.com/news/articles/2019-03-13/data-becomes-cash-crop-for-big-agriculture agriculture (accessed March 13, 2010).
- [6]. Rehenuma Lazin1, Xinyi Shen2,1 and Emmanouil Anagnostou1

"Estimation of flood-damaged cropland area using a convolutional neural network"

Published 20 April 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd

[7]. Sharma Abhinav, Jain Arpit, Gupta Prateek, Chowdary Vinay

Machine Learning Applications for Precision Agriculture: A Comprehensive Review

IEEE (2020)

[8]. S.J. Birrell, K.A. Sudduth, S.C. Borgelt

Comparison of sensors and techniques for crop yield mapping

Comput. Electron. Agric., 14 (2-3) (1996), pp. 215-233